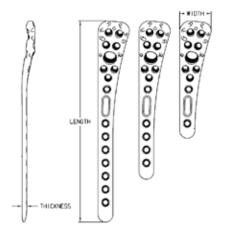
EXACTECH| TRAUMA

Operative Technique

equinoxe


Equinoxe PHx System with Exac-Loc[™] Technology

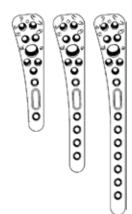
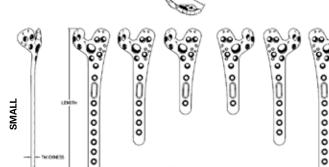


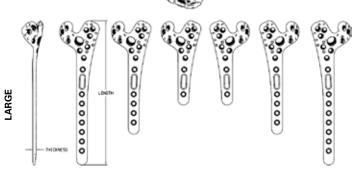
TABLE OF CONTENTS

SYSTEM SPECIFICATIONS1	PH _X GT PLATE	19
PRE-PLANNING2	OPERATIVETECHNIQUE OVERVIEW	20
Pre-Operative Planning2	DETAILED OPERATIVE TECHNIQUE	21
Patient Positioning2	Initial Placement of GT Plate	21
Surgical Approach2	Prepare for Locking Screws	22
Fracture Reduction 3	Place Locking Screws	
K-WIRE REDUCTION BLOCK 4	Suture GT Plate	
OPERATIVE TECHNIQUE OVERVIEW4	Wound Closure	23
	PH _X VICTORY PLATE	24
DETAILED OPERATIVE TECHNIQUE	OPERATIVE TECHNIQUE OVERVIEW	25
DIL ANATOMIC DI ATT	DETAILED OPERATIVE TECHNIQUE	27
PH _X ANATOMIC PLATE 6	Initial Placement of Victory Plate	27
OPERATIVE TECHNIQUE OVERVIEW 8	Set Victory Plate Height	28
DETAILED OPERATIVE TECHNIQUE10	Victory Guide Block Fixation	28
Initial Placement of Anatomic Plate10	Prepare for Exac-Loc Screw	29
Set Anatomic Plate Height11	Insert Exac-Loc Screw	30
Anatomic Guide Block Fixation12	Deploy Exac-Loc Screw	31
Verify Screw Path Using Fluoroscopy12	Verify Screw Path Using Fluoroscopy	31
Prepare for Locking Screws12	Prepare for Locking Screws	32
Place Locking Screws13	Place Locking Screws	33
Prepare for Exac-Loc Screw14	Place Final Distal Screws	34
Insert Exac-Loc Screw15	Suture Victory Plate	34
Deploy Exac-Loc Screw16	Wound Closure	34
Place Final Distal Screws17	IMPLANT REMOVAL	35
Suture Anatomic Plate18	IMPLANT LISTING	26
Wound Closure18		
	INSTRUMENT LISTING	38

SYSTEM SPECIFICATIONS


PROXIMAL HUMERUS ANATOMIC FRACTURE PLATES

Width (mm)	Length (mm)	Proximal Holes (mm)	Suture Holes (mm)	Distal Holes (mm)	Thickness (mm)
	85			1	
23	115	9	8	4	3
	150			7	


PROXIMAL HUMERUS GT FRACTURE PLATES

			Holes	Thickness (mm)
26	32	6	10	3

PROXIMAL HUMERUS VICTORY FRACTURE PLATES

	Width (mm)	Length (mm)	Proximal Holes (mm)	Suture Holes (mm)	Distal Holes (mm)	Thickness (mm)
		85			1	
Small	42	115	10	9	4	3
		150			7	
		85			1	
Large	44	115	11	10	4	3
		150			7	

	EXAC-LOC	SCREWS
	Diameter (mm)	Length (mm)
		35
		40
	7.5	45
		50
頭		55
	7.5	

	L1 10 11011	-00111
	Diameter (mm)	Leng (mn
		22
- 5		24
	3.5	26
		28
	3.5	30
		32
		34
		26

EPIC NON-LOCKING SCREWS 3.5 gth n)

^{*}Also available as a 7.5mm Humeral Cannulated Screw.

EQUINOXE PHx SYSTEM WITH EXAC-LOCTECHNOLOGY PRE-PLANNING

PRE-OPERATIVE PLANNING

After a careful history and physical examination, including identification of the dominant hand and an assessment of daily living activities, radiographs should be obtained. A standard shoulder trauma series should be obtained, including an AP view, a scapular lateral view, and an axillary view. A CT scan may provide additional information about involvement of the humeral head and tuberosity displacement.

Other factors to consider during the examination are: the length of time since the injury occurred, conditions predisposing the patient to seizure, neurological and vascular factors.

PATIENT POSITIONING

It is recommended that the patient be placed in a supine position. The head of the operating table should be elevated approximately 30 to 60 degrees in a modified beach chair position. It is recommended that the image intensifier is placed above the patient's head to facilitate biplane fluoroscopy. It is critical to ensure that positioning will allow live AP and axillary view images prior to draping. A small bolster should be placed laterally behind the involved shoulder. The patient should be moved to the side of the table so that the upper extremity can be placed in maximum extension without obstruction by the operating table. Alternatively, a Captain's chair or similar positioning device can be used for proper patient positioning. The patient should be secured to the operating table to minimize any changes in position intra-operatively. The entire upper extremity should be prepped and draped to allow complete access to the operative area and full mobility during the procedure. Either a deltopectoral or a superolateral approach may be used depending on the surgeon's preference and clinical parameters.

SURGICAL APPROACH

Deltopectoral Approach

A straight deltopectoral incision is made beginning just lateral to the tip of the coracoid process, extending distally and laterally to the insertion of the deltoid. The subcutaneous tissues are divided, and the medial and lateral flaps are elevated to expose the deeper muscular layers.

The deltopectoral interval is identified by localization of the cephalic vein. The cephalic vein is usually retracted medially or laterally with the deltoid muscle, depending on the patient's anatomy and surgeon preference. In either case, care should be taken to preserve the cephalic vein throughout the procedure.

The subdeltoid space is mobilized, as is the pectoralis major. The conjoined tendon muscles are identified and the clavipectoral fascia is divided at the edge of the conjoined tendon muscles. The fracture hematoma is usually evident after dividing the clavipectoral fascia. The conjoined tendon muscles and the pectoralis major are retracted medially, and the deltoid is retracted laterally. This can be most easily done with the use of a blunt self-retaining type retractor. Depending on plate length, a portion of the anterior deltoid insertion may need to be released. After the fracture hematoma has been evacuated, the deeper structures can be visualized. The biceps tendon should be identified, as it provides an orientation to the greater and lesser tuberosities. The humeral shaft may be internally or externally rotated to provide access to the greater or lesser tuberosities.

FRACTURE REDUCTION

Once the fracture fragments have been identified, several braided, non-absorbable sutures are passed through the tuberosity-rotator cuff tendon interface and mobilized. Under fluoroscopy, the humeral head segment is elevated, and the fracture may be reduced using a broad, blunt instrument. Ensure care is taken to avoid disrupting the medial soft-tissue hinge.

During the fracture reduction, sutures and K-wires can be used to provide provisional stabilization before applying the plate and during implantation. Care should be taken with placement of K-wires so they will not interfere with the placement of the fracture plate. There are three locations on the plate that will allow a K-wire (2.0mm or 0.787 inches) to pass through for provisional fixation.

There are two strategies to consider while implanting the Proximal Humerus Fracture (PHx) plates: provisionally reducing the fracture with sutures and/or K-wires before applying the PHx plates, or applying the PHx plates and reducing the fracture to it. Consider the following pearls:

- As soon as the humerus is exposed, immediately tag the tendon-bone junction of the anterior, superior, and posterior cuff with sutures to establish control. Manipulating these sutures can be helpful to reduce the fracture.
- Place sutures between the fragments and reduce them around the humeral head to hold it in place.
- When applying the plate, a 3.5mm EPIC Non-Locking Screw is usually inserted in the slotted hole, giving the opportunity for height adjustment after C-arm control.
- Once the plate is nearly snug to the bone, recheck the plate height and adjust the plate by sliding it along the Non-Locking Screw in the shaft slot.
- When the proper height is determined, tighten the Non-Locking Screw in the sliding hole of the plate.
- If applying the plate prior to fracture reduction, the Non-Locking Screw slot on the shaft allows for adjustment (±5mm) axially.
- While reducing the fracture, check the relationships between the humeral head, tuberosities, and humeral shaft.

Step 1Pin K-wire Block to Diaphyseal Bone. Use Threaded Drill Guide as a Handle

Step 2
Insert Convergent Wires into the Proximal Humerus to Stabilize Fracture. Remove Threaded Drill Guide Handle

Step 3Remove Pins Stabilizing the K-wire Block to Diaphysis

Step 4
Remove K-wire Block. Pivot Slider to Release the Posterior K-wire and Slide off Anteriorly

Step 5
Ensure Converging
Wires Retain Fracture

FRACTURE REDUCTION

Figure 1a
K-wire Reduction Block

Figure 1b K-wires in Place

FRACTURE REDUCTION

Once the fracture fragments have been identified, several braided, non-absorbable sutures may be passed through the tuberosity-rotator cuff tendon interface and mobilized. Under fluoroscopy, the humeral head segment may be elevated and the fracture may be reduced using a broad, blunt instrument. Care is taken to avoid disrupting the medial soft-tissue hinge.

During the fracture reduction, sutures, and K-wires can be used to provide provisional stabilization both before applying the plate and during implantation. Care should be taken with placement of K-wires so they will not interfere with the placement of the fracture plate. There are three locations on the plate that will allow a K-wire (2.0mm or 0.787 inches) to pass through for provisional fixation.

Depending on the fracture pattern, there are two strategies to consider while implanting the Proximal Humerus Fracture (PHx) Plate: provisionally reducing the fracture with sutures and/or K-wires before applying the PHx Plate or applying the PHx Plate and reducing the fracture to it. Please consider the following pearls:

 As soon as the humerus is exposed, immediately tag the tendon-bone junction of the anterior, superior and posterior cuff with sutures to establish control. Manipulating these sutures can be helpful to reduce the fracture.

- Place sutures between the fragments and reduce them around the humeral head to hold it in place.
- When applying the plate, a Compression Screw is usually inserted in the slotted hole, giving the opportunity for height adjustment after C-arm control.
- Once the plate is nearly snug to the bone, recheck the plate height and adjust the plate by sliding it along the Compression Screw in the shaft slot. When the proper height is determined, tighten the Compression Screw in the sliding hole of the plate.
- If applying the plate prior to fracture reduction, the height does not need to be perfect since the Compression Screw slot on the shaft allows for adjustment (±5.2mm).
- While positioning the plate, use the Guide Block and identify the trajectory of the lowest screws into the humeral head using the K-wire Reduction Block (Figure 1a), as this is a critical component of the stability of the fracture construct.
- While reducing the fracture, check the relationships between the humeral head, tuberosities, and humeral shaft. The K-wire Reduction Block is used for assistance in providing stability to fracture reduction while the fracture plate is placed on bone (Figure 1b).

Step 1
Reduce Fracture

Step 2
Prepare Humerus for Non-Locking
Screw in the Oblong Hole

Step 3
Place Non-Locking Screw

Step 4a
Set Plate Height Using
Guide Block in Relation to
Greater Tuberosity

Step 4b
Set Plate Height Using the K-wire
Guide in Relation to Center of
Humeral Head

Step 4c
Set Plate Height Using
Calcar Screw Holes

Step 5
Prepare for Proximal Locking
Screws Using 2.7mm PHx ColorCoded Drill Bit

Step 6
Place Proximal Locking Screws

Step 7
Measure Center Hole Exac-Loc
Screw Length

Step 8a
Option A: Prepare for
Center Exac-Loc Screw
Using Depth Stop Drill

Step 8b
Option B: Prepare for Center Exac-Loc
Screw Using 6.5mm PHx Color-Coded
Drill Bit

Step 9
Place Exac-Loc Screw

Step 10
Deploy Exac-Loc Mechanism

Step 11
Prepare for and Place Final Distal Screw*
*Distal screw holes can accommodate Locking Screws
or Non-Locking Screws.

Step 12 Final View

INITIAL PLACEMENT OF ANATOMIC PLATE

Diameter (mm)	Length (mm)	Color Code
	22	White
	24	
	26	Black
	28	
3.5	30	Orange
	32	
	34	Blue
	36	

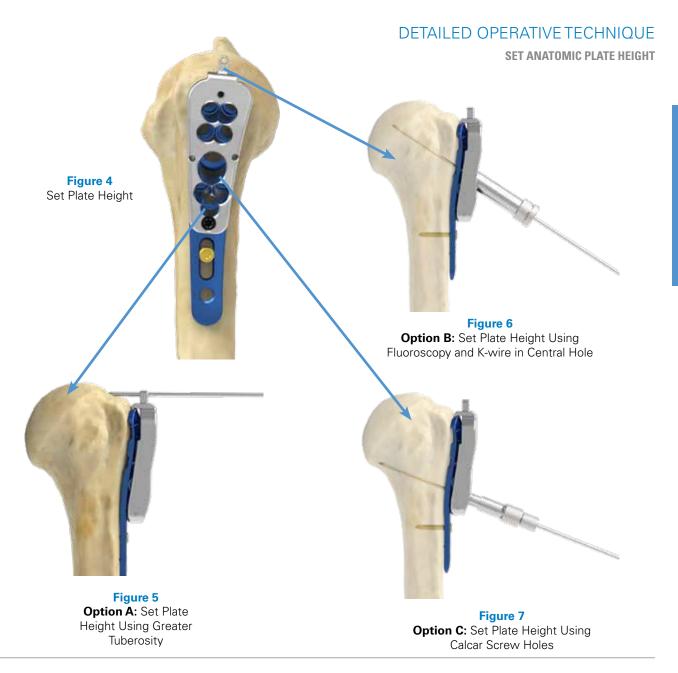
Table 1
Color-Coded Non-Locking Screws

Figure 2
Prepare Humerus for Distal Non-Locking Screws

Figure 3
Place Non-Locking Screw

INITIAL PLACEMENT OF ANATOMIC PLATE

An **Anatomic Plate** of appropriate length is selected, and the **Anatomic Guide Block** is screwed into place on the Anatomic Plate using the **T-15 Driver**. The plate is applied to the lateral aspect of the humerus and shaft. The superior tip of the plate is positioned distal to the superior greater tuberosity (*Figure 2*). The plate will sit approximately 7mm below the superior aspect of the greater tuberosity.


Note: Anatomic Plate lengths of 85, 115 and 150mm are offered

During the fracture reduction, sutures and K-wires can be used to provide provisional stabilization before applying the plate and during implantation. Care should be taken with placement of K-wires so they will not interfere with the placement of the fracture plate. There are three locations on the plate that will allow a K-wire to pass through for

provisional fixation. There are two strategies to consider while implanting the Proximal Humerus Fracture (PHx) System: provisionally reducing the fracture with sutures and/or K-wires before applying the PHx plates or applying the PHx plates and reducing the fracture to it. Please consider the following pearls: A 3.5mm EPIC Non-Locking Screw placed through the slotted hole of the plate should be used to bring the humeral shaft to the plate (Table 1). This will allow the plate to be adjusted either proximally or distally along the humeral shaft. First, the hole is drilled using the 2.7mm PHx Color-Coded Drill Bit through the Compression Drill Guide (Figure 2). The 3.5mm Screw Depth Gauge can be used to verify the screw length.

Note: The EPIC Solid Depth Guide (2100-0001) can be used as an alternative to the 3.5mm Screw Depth Gauge.

Once the depth is determined, the appropriately sized Non-Locking Screw is then inserted (Figure 3). See page 1 for screw dimensions.

SET ANATOMIC PLATE HEIGHT

To set the height of the Anatomic Plate along the humerus, use one of three options (Figure 4).

Option A:

Using Greater Tuberosity

The plate height can be determined off the greater tuberosity using a **2.0mm (.079") K-wire** through the superior hole of the Anatomic Guide Block (*Figure 5*).

Option B:

Using Fluoroscopy and K-wire in Central Hole Using fluoroscopy, the plate height can be determined using the 7.5mm central hole of the plate. A K-wire is placed through the **6.5mm K-wire Guide** and should bisect the diameter of the articular surface (*Figure 6*). Additionally, check plate height laterally to ensure it is not above the level of the greater tuberosity.

Option C: Using Calcar Screw Holes

The plate height can be determined using one of the three inferior calcar screw holes. Place a K-wire in the inferior head neck junction to assess the plate height under fluoroscopy. Place the **Fracture Screw Guide** in one of the three holes in the calcar region of the plate, then stack the **2.7mm Threaded Drill Guide** through the Fracture Screw Guide to attach to the plate. Using fluoroscopy, determine the plate height (*Figure 7*).

ANATOMIC GUIDE BLOCK FIXATION

Figure 8
Secure Guide Block Using K-wire Holes

Figure 9
Verify Screw Path Using Fluoroscopy

Figure 10
Prepare Humerus for Proximal
Locking Screws

ANATOMIC GUIDE BLOCK FIXATION

The Anatomic Guide Block and plate can be secured to the bone using the provided K-wire holes in the Anatomic Guide Block* (Figure 8).

*Note: This is an optional step.

VERIFY SCREW PATH USING FLUOROSCOPY

The screw path trajectory can be verified under fluoroscopy prior to drilling for the **3.5mm EPIC Locking Screws**. Stack the Fracture Screw Guide and 2.7mm Threaded Drill Guide, inserting into the Anatomic Guide Block and locking into the Anatomic Plate. Insert a K-wire through the construct. The depth of each hole is determined using the **2.7mm PHx Color-Coded Drill Bit** or **K-wire Depth Gauge** (Figure 9).

Note: It is recommended to use fluoroscopy when preparing for the locking screws (Figure 9).

PREPARE FOR LOCKING SCREWS

Prepare the proximal bone for the Locking Screws with the and 2.7mm Threaded Drill Guide. To prepare each hole for the Locking Screw, stack the Fracture Screw Guide and the 2.7mm Threaded Drill Guide, connecting the construct to the Guide Block and locking directly into the Anatomic Plate. Use the 2.7mm PHx Color-Coded Drill Bit to determine the appropriate Locking Screw length (Figure 10).

	Color Code	Length (mm)	iameter (mm)
J.		24	
-2	Black	26	
- 1		28	
-2	Orange	30	
1		32	
-3	Blue	34	
		36	
-3	Red	38	
		40	
-4	Green	42	3.5
-		44	0.0
-4	Yellow	46	
100		48	
-4	Purple	50	
	·	52	
5	Brown	54	
-6		56	
-5		58	
-6		60	

Table 2Color-Coded Locking Screws

Figure 11
Place Locking Screws

The Locking Screws are provided in lengths between 24mm and 60mm, in 2mm increments (*Table 2*).

See page 1 for dimensions.

Note: There should be a slight gap between the 2.7mm Threaded Drill Guide and the Fracture Screw Guide (Figure 10).

PLACE LOCKING SCREWS

The 2.7mm Threaded Drill Guide is removed and the Fracture Screw Guide is attached to the Anatomic Guide Block. The appropriate Locking Screw is inserted through the construct using the T-15 Driver (Figure 11).

A ratcheting **Mini AO Handle** is provided to facilitate the placement and tightening of the screws. The locking depth indicator line on the T-15 Driver will provide visual reference for when the screw is engaging the locking threads in the Anatomic Plate. The aforementioned steps are repeated for placing each Locking Screw.

PREPARE FOR EXAC-LOC SCREW

Figure 12 Measure for Exac-Loc Screw Length

Figure 13 Option A: Prepare for Exac-Loc Screw Using Depth Stop Drill

Figure 14 Option B: Prepare for Exac-Loc Screw Using 6.5mm PHx Color-Coded Drill Bit

PREPARE FOR EXAC-LOC SCREW

Thread the K-wire Guide into the 6.5mm Threaded Drill Guide in the 7.5mm center hole of the Anatomic Guide Block. Using fluoroscopy, bisect the diameter of the articular surface with the K-wire. (The tip to apex distance should be approximately 10 -20mm). Using the K-wire Depth Gauge (Figure 12), determine the appropriate length Exac-Loc **Screw**. Remove the K-wire and the K-wire Guide once length has been determined.

To prepare the center hole for the Exac-Loc Screw, use one of two options.

Note: It is recommended to use fluoroscopy when preparing for the locking screws (Figure 9).

Option A:

Using the Depth Stop and Depth Stop Drill Assemble the **Depth Stop** to the **Depth Stop Drill**. Adjust the Depth Stop to the appropriate length on the Depth Stop Drill prior to inserting the assembly through the 6.5mm Threaded Drill Guide (Figure 13).

Option B:

Using the 6.5mm PHx Color-Coded Drill Bit Insert the 6.5mm PHx Color-Coded Drill Bit through the

6.5mm Threaded Drill Guide. Confirm the appropriate length of Exac-Loc Screw as identified by the K-wire using the color codes on the 6.5mm Color-Coded Drill Bit (Figure 14).

Figure 15
Insert Exac-Loc Screw

Diameter (mm)	Length (mm)	Color Code	Ш
	35	Orange	36
	40	Blue	40
7.5	45	Red	45
	50	Green	50
	55	Yellow	55

Table 3Color-Coded Exac-Loc Drill

INSERT EXAC-LOC SCREW

The 6.5mm Threaded Drill Guide is removed and the appropriately sized Exac-Loc Screw is inserted using the **Cannulated T-40 Driver** (Figure 15).

The Exac-Loc Screws are provided in lengths between 35mm and 55mm, in 5mm increments (*Table 3*). **7.5mm Humeral Cannulated Screws**, without the deployable locking mechanism, are also available. The 6.5mm Threaded Drill Guide is removed and the appropriately sized Exac-Loc Screw is inserted.

DEPLOY EXAC-LOC SCREW

Figure 16
Deploy Exac-Loc Screw

Figure 17 Top View

DEPLOY EXAC-LOC SCREW

Once the Exac-Loc Screw is locked into the plate, use the Cannulated T-40 Driver as a counter torque and insert the **Exac-Loc Driver** through the Cannulated T-40 Driver to deploy the talons within the Exac-Loc Screw (*Figure 16*).

The Exac-Loc Driver must be used with the ratcheting Mini AO Handle when deploying the locking talon (*Figure 17*).

Note: It is recommended to use fluoroscopy when deploying the talon mechanism of the Exac-Loc Screw (Figure 17).

After deploying the Exac-Loc screw, remove the Anatomic Plate Guide Block.

PLACE FINAL DISTAL SCREWS

Figure 18
Place Final Distal Screw

Figure 19 Final View

PLACE FINAL DISTAL SCREWS

The final distal screws can be a Non-Locking Screw or Locking Screw. Use the Non-Locking Screw Drill Guide with the Non-Locking Screw. The 2.7mm Threaded Drill Guide is required for use with the Locking Screws.

The Screw Depth Gauge can be used to verify the screw length. The 2.7mm PHx Color-Coded Drill Bit is used with the corresponding Threaded Drill Guide to prepare the bone for the final screws. Bicortical fixation is recommended (Figures 18 and 19). Insert the final screws using the T-15 Driver.

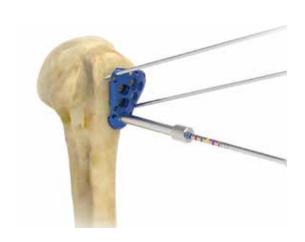
SUTURE ANATOMIC PLATE

Figure 20Pass Sutures

SUTURE ANATOMIC PLATE

The Anatomic Plate has several proximal locations that will allow sutures to pass through the plate (Figure 20). Heavy braided, non-absorbable sutures are recommended for attaching soft tissue or bony fragments. Sutures may be passed once the plate is fixed to the humerus.

WOUND CLOSURE


The wound is closed in layers over a suction drain with braided non-absorbable sutures to prevent formation of hematoma.


Step 1 Place GT Plate

Step 2Set Plate Height

Step 3Prepare for Locking Screws

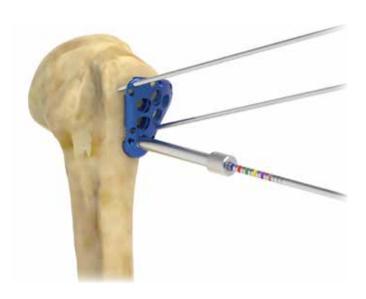
Step 4
Place Locking Screws

Step 5Place Final Locking Screw

Step 6Final View

INITIAL PLACEMENT OF GT PLATE

Figure 21 Initial Placement of GT Plate


Figure 22 Secure GT Plate with K-wires

INITIAL PLACEMENT OF GT PLATE

The **Greater Tuberosity (GT) Plate** is applied to the lateral aspect of the humerus and shaft posterior to the bicipital groove. The plate can be positioned using a 2.7mm Threaded Drill Guide as a handle (*Figure 21*).

Using a K-wire, secure the GT Plate to the bone (Figure 22). The GT Plate is designed with dual suture and K-wire holes to assist in stabilizing the plate in position.

PREPARE FOR LOCKING SCREWS

			igure 23		
Prepare	Bone	for	Proximal	Locking	Screws

meter (mm)	Length (mm)	Color Code
	24	
	26	Black
	28	
	30	Orange
	32	
	34	Blue
	36	
	38	Red
	40	
3.5	42	Green
	44	
	46	Yellow
	48	
	50	Purple
	52	
	54	Brown
	56	
	58	
	60	

Table 4Color-Coded Locking Screws

PREPARE FOR LOCKING SCREWS

Prepare the proximal bone for the Locking Screws with the 2.7mm PHx Color-Coded Drill Bit and 2.7mm Threaded Drill Guide (Figure 23).

The screw path trajectory can be verified under fluoroscopy prior to drilling for the Locking Screw. Lock the 2.7mm Threaded Drill Guide into the chosen hole and insert a K-wire.

Note: It is recommended to use fluoroscopy when preparing for the Locking Screws.

The depth of each hole is determined using the 2.7mm PHx Color-Coded Drill Bit or Screw Depth Gauge. The Locking Screws are provided in lengths between 24mm and 60mm, in 2mm increments (*Table 4*).

See page 1 for screw dimensions.

PLACE LOCKING SCREWS

Figure 24
Place Locking Screw

Figure 25
Place Final Locking Screw

Figure 26 Final View

PLACE LOCKING SCREWS

The 2.7mm Threaded Drill Guide is removed and the appropriate length Locking Screw is inserted. A ratcheting Mini AO Handle is used to facilitate the placement and tightening of the screws. The locking depth indicator line on the T-15 Driver will provide visual reference for when the screw is engaging the locking threads in the plate (Figure 24).

The aforementioned steps are then repeated for placing each Locking Screw in the proximal GT Plate (Figures 25 and 26).

SUTURE GT PLATE

The GT Plate has several proximal locations that will allow sutures to pass through the plate. Heavy braided, non-absorbable sutures are recommended for attaching soft tissue or bony fragments. Sutures may be passed once the plate is fixed to the humerus.

WOUND CLOSURE

The wound is closed in layers over a suction drain with braided non absorbable sutures to prevent formation of hematoma.

Step 1
Reduce Fracture

Step 2Place Victory Plate

Step 3
Prepare Humerus for Non-Locking Screw in Oblong
Hole Using 2.7mm PHx Color-Coded Drill Bit

Step 4Place Non-Locking Screw

Step 5Set Plate Height

Step 6
Measure Center Hole Exac-Loc Screw Length

Step 7a
Option A: Prepare for Center ExacLoc Screw Using Depth Stop Drill

Step 7b
Option B: Prepare for Center Exac-Loc Screw
Using 6.5mm PHx Color-Coded Drill Bit

Step 8
Place Exac-Loc
Center Screw

Step 10
Prepare for Proximal Locking Screws

Step 11
Place Proximal Locking Screws

Step 12
Prepare for and Place Final Distal
Shaft Screw*

*Distal screw holes can accommodate Locking Screws or Non-Locking Screws

Step 13 Final View

INITIAL PLACEMENT OF VICTORY PLATE

Figure 27
Initial Placement of
Victory Plate

Diameter (mm)	Length (mm)	Color Code	
	22	White	Hi.
	24		-2
0.5	26	Black	
	28		-2
3.5	30	Orange	
	32		-32
	34	Blue	1
	36		-36

Table 5Color-Coded Non-Locking Screws

INITIAL PLACEMENT OF VICTORY PLATE

A **Victory Plate** of appropriate length and width is selected, and the **Victory Guide Block** is screwed into place on the Victory Plate using the T-15 Driver. The plate is applied to the lateral aspect of the humerus and shaft along the lateral aspect of the bicipital groove. The superior tip of the plate is positioned distal to the superior greater tuberosity (*Figure 27*). The plate will sit approximately 7mm below the superior aspect of the greater tuberosity.

Note: Victory Plates are offered in two sizes, small and large, in lengths of 85, 115, and 150mm.

A Non-Locking Screw placed through the slotted hole of the plate should be used to bring the humeral shaft to the plate (*Table 5*).

This will allow the plate to be adjusted either proximally or distally along the humeral shaft. First, the hole is drilled using the 2.7mm PHx Color-Coded Drill Bit through the Compression Drill Guide. Once the depth is determined, the appropriately sized Non-Locking Screw is then inserted (Figures 28 and 29).

See page 1 for screw dimensions.

VICTORY GUIDE BLOCK FIXATION

Figure 30 Set Plate Height

Figure 31
Secure Guide Block and Plate to Bone Using K-wire

SET VICTORY PLATE HEIGHT

Using fluoroscopy, the plate height can be determined using the 7.5mm central hole of the plate. A K-wire is placed through the K-wire Guide and should bisect the diameter of the articular surface (*Figure 30*). Check plate height laterally to ensure it is not above the level of the greater tuberosity.

VICTORY GUIDE BLOCK FIXATION

The Victory Guide Block and Victory Plate can be secured to the bone using the provided K-wire holes in the Guide Block* (Figure 31).

*Note: This is an optional step.

PREPARE FOR EXAC-LOC SCREW

Figure 32
Prepare for Exac-Loc Screw

Figure 33
Option A: Prepare Central Hole for Exac-Loc
Screw Using Depth Stop Drill

Figure 34
Option B: Prepare Central Hole for Exac-Loc Screw Using 6.5mm PHx Color-Coded Drill Bit

PREPARE FOR EXAC-LOC SCREW

With the K-wire still in place, use the K-wire Depth Gauge to determine the required length of Exac-Loc Screw (Figure 32).

To prepare the humeral bone for the Exac-Loc Screw, use one of two options.

INSERT EXAC-LOC SCREW

Option A:

Using the Depth Stop and the Depth Stop Drill

Assemble the Drill Stop and the Depth Stop Drill. Adjust the Depth Stop Drill to the appropriate length as determined by the K-wire Depth Gauge and K-wire prior to inserting the assembly through the 6.5mm Threaded Drill Guide (Figure 33).

Option B:

Using the 6.5mm PHx Color-Coded Drill Bit

Insert the 6.5mm PHx Color-Coded Drill Bit through the 6.5mm Threaded Drill Guide. Confirm the appropriate length of Exac-Loc Screw as identified by the K-wire using the color codes on the 6.5mm Color-Coded Drill Bit (Figure 34).

INSERT EXAC-LOC SCREW

Figure 35
Place Exac-Loc Screw

Diameter (mm)	Length (mm)	Color Code	
7.5	35	Orange	
	40	Blue	
	45	Red	
	50	Green	
	55	Yellow	

Table 6
Color-Coded Exac-Loc Drill Bit

INSERT EXAC-LOC SCREW

The 6.5mm Threaded Drill Guide is removed and the appropriately sized Exac-Loc Screw is inserted using the Cannulated T-40 Driver (Figure 35).

The Exac-Loc Screws are provided in lengths between 35mm and 55mm, in 5mm increments (*Table 6*).

The Humeral Cannulated Screws without the deployable locking talons are also available. The **6.5mm Threaded Drill Guide** is removed and the appropriately sized Humeral Cannulated Screw is inserted.

DEPLOY EXAC-LOC SCREW

Figure 36
Deploy Exac-Loc Screw

Figure 37
Verify Locking Screw Path Using Fluoroscopy

DEPLOY EXAC-LOC SCREW

Once the Exac-Loc Screw is locked into the plate, use the Cannulated T-40 Driver as a counter torque and insert the Exac-Loc Driver through the Cannulated T-40 Driver to deploy the locking talons within the Exac-Loc Screw. The Exac-Loc Driver must be used with the ratcheting Mini AO Handle when deploying the locking talons (Figure 36).

Note: It is recommended to use fluoroscopy when deploying the locking mechanism of the Exac-Loc Screw (Figure 37).

VERIFY SCREW PATH USING FLUOROSCOPY

Prior to drilling for the Locking Screws, the screw path trajectory can be verified under fluoroscopy using a K-wire (Figure 37).

Stack the Fracture Screw Guide and the 2.7mm Threaded Drill Guide and insert into the Guide Block, locking into the plate. Insert a K-wire through the construct. The depth of each hole can be determined using the K-wire Depth Gauge (Figure 37).

Note: It is recommended to use fluoroscopy when preparing for the Locking Screws (Figure 37).

PREPARE FOR LOCKING SCREWS

Figure 38
Prepare Humerus for Locking Screws

Figure 39
Built-in Gap Between Drill Guide and Screw Guide

iameter (mm)	Length (mm)	Color Code
	24	
	26	Black
	28	
	30	Orange
	32	
	34	Blue
	36	
	38	Red
	40	
3.5	42	Green
0.0	44	
	46	Yellow
	48	
	50	Purple
	52	
	54	Brown
	56	
	58	
	60	

Table 7Color-Coded Locking Screws

PREPARE FOR LOCKING SCREWS

To prepare each hole for the Locking Screws, stack the Screw Guide and the 2.7mm Threaded Drill Guide and connect to the Victory Plate Guide Block. The 2.7mm Threaded Drill Guide will thread directly into the plate. Use the 2.7mm PHx Color-Coded Drill Bit to determine the appropriate Locking Screw length (Figure 38).

Note: There should be a slight gap between the 2.7mm Threaded Drill Guide and the Fracture Screw Guide (Figure 39).

The Locking Screws are provided in lengths between 24mm and 60mm, in 2mm increments (*Table 7*).

See page 1 for screw dimensions.

Figure 40
Place Screws Using Guide

Figure 41
Top View

PLACE LOCKING SCREWS

The 2.7mm Threaded Drill Guide is removed and the Fracture Screw Guide is attached to the Victory Guide Block. The appropriate Locking Screw is inserted through the construct using a T-15 Driver (Figure 40).

A ratcheting Mini AO Handle is provided to facilitate the placement and tightening of the screws. The locking depth Indicator line on the T-15 Driver will provide visual reference for when the screw is engaging the locking threads in the Victory Plate.

The aforementioned steps are then repeated for placing each Locking Screw in the proximal portion of the plate (Figure 41).

After placing all Locking Screws, remove the Victory Plate Guide Block.

PLACE FINAL DISTAL SCREWS

Figure 42
Place Final Distal Screw

Figure 43
Final View

Figure 44Pass Sutures

PLACE FINAL DISTAL SCREWS

The final distal screw can be a Non-Locking Screw or Locking Screw. The Non-Locking Screw Drill Guide is used with the Non-Locking Screw. The 2.7mm Threaded Drill Guide is required for use with the Locking Screw. The Screw Depth Gauge can be used to verify the screw length. The 2.7mm PHx Color-Coded Drill Bit is used with the 2.7mm Threaded Drill Guide to prepare the bone for the final screw. Bi-cortical fixation is recommended (Figures 42 and 43). Insert the final screws using the T-15 Driver.

SUTURE VICTORY PLATE

The Victory Plate has several proximal locations for sutures to pass through the plate (Figure 44). Heavy braided, non-absorbable sutures are recommended for attaching soft tissue or bony fragments. Sutures may be passed once the plate is fixed to the humerus.

WOUND CLOSURE

The wound is closed in layers over a suction drain with braided non-absorbable sutures to prevent formation of hematoma.

IMPLANT REMOVAL

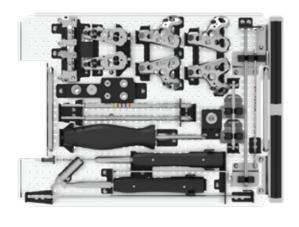
In the event that the patient must be revised and the implants must be removed, the ratcheting Mini AO Handle and drivers are used. To remove the Exac-Loc Screw, use the Cannulated T-40 Driver as a counter torque with the Exac-Loc Driver. Retract the talons by inserting the Exac-Loc Driver through the T-40 cannulation. Confirm the talons are fully retracted using fluoroscopy prior to removing the Exac-Loc Screw. Unlock the remaining screws from the plate before removing them completely from the bone.

IMPLANT LISTING

CATALOG NO. PART DESCRIPTION

370-04-85 370-14-85 370-04-115 370-14-115 370-04-150 370-14-150	Anatomic Plate, 85mm, Left Anatomic Plate, 85mm, Right Anatomic Plate, 115mm, Left Anatomic Plate, 115mm, Right Anatomic Plate, 150mm, Left Anatomic Plate, 150mm, Right	
370-01-12 370-01-13	GT Plate, Left GT Plate, Right	
370-02-85 370-12-85 370-03-85 370-13-85 370-02-115 370-03-115 370-13-115 370-02-150 370-12-150 370-03-150 370-13-150	Victory Plate Small, 85mm, Left Victory Plate Small, 85mm, Right Victory Plate Large, 85mm, Left Victory Plate Large, 85mm, Right Victory Plate Small, 115mm, Left Victory Plate Small, 115mm, Right Victory Plate Large, 115mm, Left Victory Plate Large, 115mm, Right Victory Plate Small, 150mm, Left Victory Plate Small, 150mm, Left Victory Plate Small, 150mm, Right Victory Plate Large, 150mm, Left Victory Plate Large, 150mm, Right	
370-75-35 370-75-40 370-75-45 370-75-50 370-75-55	Exac-Loc Screw, 35mm Exac-Loc Screw, 40mm Exac-Loc Screw, 45mm Exac-Loc Screw, 50mm Exac-Loc Screw, 55mm	
370-65-35 370-65-40 370-65-45 370-65-50 370-65-55	Humeral Cannulated Screw, 7.5mm x 35mm Humeral Cannulated Screw, 7.5mm x 40mm Humeral Cannulated Screw, 7.5mm x 45mm Humeral Cannulated Screw, 7.5mm x 50mm Humeral Cannulated Screw, 7.5mm x 55mm	
2001-3522-N 2001-3524-N 2001-3526-N 2001-3528-N 2001-3530-N 2001-3532-N 2001-3534-N 2001-3536-N	EPIC Non-Locking Screw, 3.5mm x 22mm EPIC Non-Locking Screw, 3.5mm x 24mm EPIC Non-Locking Screw, 3.5mm x 26mm EPIC Non-Locking Screw, 3.5mm x 28mm EPIC Non-Locking Screw, 3.5mm x 30mm EPIC Non-Locking Screw, 3.5mm x 32mm EPIC Non-Locking Screw, 3.5mm x 34mm EPIC Non-Locking Screw, 3.5mm x 36mm	

IMPLANT LISTING


CATALOG NO.	PART DESCRIPTION	
2000-3524 2000-3526 2000-3528 2000-3530 2000-3532 2000-3534 2000-3536 2000-3540 2000-3542 2000-3544 2000-3544 2000-3548 2000-3550 2000-3550 2000-3552 2000-3556 2000-3558 2000-3560	EPIC Locking Screw, 3.5mm x 24mm EPIC Locking Screw, 3.5mm x 26mm EPIC Locking Screw, 3.5mm x 28mm EPIC Locking Screw, 3.5mm x 30mm EPIC Locking Screw, 3.5mm x 32mm EPIC Locking Screw, 3.5mm x 34mm EPIC Locking Screw, 3.5mm x 36mm EPIC Locking Screw, 3.5mm x 38mm EPIC Locking Screw, 3.5mm x 40mm EPIC Locking Screw, 3.5mm x 44mm EPIC Locking Screw, 3.5mm x 44mm EPIC Locking Screw, 3.5mm x 44mm EPIC Locking Screw, 3.5mm x 46mm EPIC Locking Screw, 3.5mm x 48mm EPIC Locking Screw, 3.5mm x 50mm EPIC Locking Screw, 3.5mm x 50mm EPIC Locking Screw, 3.5mm x 54mm EPIC Locking Screw, 3.5mm x 54mm EPIC Locking Screw, 3.5mm x 56mm EPIC Locking Screw, 3.5mm x 58mm	
371-01-24	Threaded Drill Guide, 2.7mm	
371-01-02	Threaded Drill Guide, 6.5mm	
371-01-20	Compression Drill Guide	1
371-01-29	K-wire Guide, 6.5mm	
371-01-18	Fracture Screw Guide	
371-02-00 371-02-01	Guide Block, Anatomic Plate, Left Guide Block, Anatomic Plate, Right	

INSTRUMENT LISTING

CATALOG NO. PART DESCRIPTION

371-04-00 371-04-01 371-03-00 371-03-01	Guide Block, Victory Plate, Small, Left Guide Block, Victory Plate, Small, Right Guide Block, Victory Plate, Large, Left Guide Block, Victory Plate, Large, Right
371-20-00	2.0mm (.079") K-wire
341-07-85	Mini AO Handle
371-00-27	PHx Color-Coded Drill Bit, 2.7mm
371-01-17	PHx Color-Coded Drill Bit, 6.5mm
371-01-65	Depth Stop Drill
371-01-33	Exac-Loc Driver
371-01-40	Cannulated T-40 Driver
371-01-09	3.5mm Screw Depth Gauge
371-01-32	Depth Stop
371-01-31	K-wire Depth Gauge
2100-0001	EPIC Solid Depth Guide
371-01-30	T-15 Driver
371-01-34 371-01-35	K-wire Block, Left K-wire Block, Right

NOTES			

REFERENCE

1. AO Principles of Fracture Management, Thieme Verlag. Most recent version is from 2018.

Exactech is proud to have offices and distributors around the globe. For more information about Exactech products available in your country, please visit www.exac.com

For additional device information, refer to the Exactech Equinoxe PH_x Plate System–Instructions for Use for information including, but not limited to, a device description, indications, contraindications, precautions and warnings. For further product information, please contact Customer Service, Exactech, Inc., 2320 NW 66th Court, Gainesville, Florida 32653-1630, USA. (352) 377-1140, (800) 392-2832 or FAX (352) 378-2617.

Exactech, as the manufacturer of this device, does not practice medicine, and is not responsible for recommending the appropriate surgical technique for use on a particular patient. Because this information does not purport to constitute any diagnostic or therapeutic statement with regard to any individual medical case, each patient must be examined and advised individually, and this document does not replace the need for such examination and/or advice in whole or in part. These guidelines are intended to be solely informational and each surgeon must evaluate the appropriateness of these guidelines based on his or her personal medical training and experience. Prior to use of this system, the surgeon should refer to the product package insert for information including, but not limited to, comprehensive warnings, precautions, indications for use, contraindications and adverse effects.

The products discussed herein may be available under different trademarks in different countries. All copyrights, and pending and registered trademarks, are property of Exactech, Inc. This material is intended for the sole use and benefit of the Exactech sales force and physicians; it is not intended for laypersons. It should not be redistributed, duplicated or disclosed without the express written consent of Exactech, Inc. ©2025 Exactech, Inc. 00-0001034 Rev/B 031125

EXACTECH, INC. 2320 NW 66TH COURT GAINESVILLE, FL 32653 USA

- +1 352.377.1140
- +1 800.EXACTECH
- +1 352.378.2617 (FAX)

www.exac.com